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Time-optimal trajectory planning (TOTP) is a well-studied

problem in robotics and manufacturing, which involves the

minimization of the time required for the operation point of

a mechanism to follow a path, subject to a set of constraints.

A TOTP technique, designed for fully specified paths that in-

clude abrupt changes in direction, was previously introduced

by the first author of this paper: an incremental approach

called minimum-time trajectory shaping (MTTS) was used.

In the current paper, MTTS is converted to a dynamic tech-

nique and adapted for use with cable-driven parallel robots,

which exhibit cable tension and motor torque constraints.

For many applications, cable tensions along a path are ver-

ified after trajectory generation, rather than imposed during

trajectory generation. For the technique proposed in this pa-

per, the cable-tension constraints are imposed directly and

fully integrated with MTTS, during trajectory generation,

thus maintaining a time-optimal solution. MTTS is applied

to a test system and path, and compared to the bang-bang

technique. With the same constraints, the results obtained

with both techniques are found to be very close. However,

MTTS can be applied to a wider variety of paths, and ac-

cepts constraints on jerk and total acceleration that would

be difficult to apply using the bang-bang approach.

1 Introduction

The time-optimal trajectory planning (TOTP) problem

involves the minimization of the time required for the op-

eration point of a mechanism to follow a path, subject to

constraints on velocity, acceleration, jerk, force, torque, and

other parameters. The problem has received extensive treat-

ment in the literature; both dynamic and kinematic tech-

niques have been disclosed. With the former, the torque

and/or force required for a manipulator to follow a path are

specified directly. For the latter, kinematic constraints must

dominate, and a torque and/or force controller is assumed to
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be available to produce specified kinematic quantities.

A second distinction exists between online and offline

methods. For online methods, trajectory generation takes

place while the positioning system is completing the task at

hand, while for offline methods, trajectories are generated

before the system starts the task. Obviously, online imple-

mentation places a strict limit on computational complexity.

Therefore, if path geometry is known before the task is to be

executed, an offline technique is normally preferable. Fur-

ther distinctions among TOTP techniques include the ability

to handle partially specified or fully specified paths, and the

ability to handle G1 path discontinuities, which consist of

abrupt changes in direction. These distinctions will be dis-

cussed in more detail as the related work is introduced.

Time-optimal trajectory planning for cable-driven par-

allel mechanisms is also constrained by the need for cables

to remain in positive tension at all times. Negative ten-

sion in any cable causes a loss of manipulator positioning

precision and unpredictable behavior. Maximum cable ten-

sion constraints are also needed, in some cases. A spatial

three-degree-of-freedom cable-suspended robot is shown in

Fig. 1. It consists of a point-mass end-effector, suspended by

three cables, whose lengths are controlled by fixed, actuated

spools.

Positioning system hardware constraints are normally

expressed most directly as maximum forces and torques.

Therefore, dynamic techniques will usually result in a faster

TOTP solution, compared to kinematic techniques. Several

dynamic techniques for time-optimal control have been pro-

posed in the field of robotics [1–4]. Most of these tech-

niques use bang-bang control, whereby acceleration switch-

ing points are identified along a path, at which actuators

switch from maximum torque to minimum or vice-versa.

Expressing positioning system constraints as kinematic

quantities is often approximate. Therefore, kinematic TOTP

solutions will usually be slower than dynamic techniques.

However, many applications involve kinematic process con-

straints. For example, a maximum speed constraint is com-

mon for dispensing applications. The dynamic techniques
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Fig. 1. Spatial three-DOF cable-suspended robot.

listed above all have limited applicability to TOTP problems

with kinematic constraints. While velocity constraints and

joint acceleration constraints are readily included with the

bang-bang method, total linear acceleration and jerk con-

straints are not.

Several kinematic approaches have been proposed for

solving the TOTP problem. In [5], [6], and [7] robot paths

are represented using cubic splines, quintic polynomials, and

B-splines, respectively. In all of these cases, velocity, ac-

celeration, and jerk constraints can be imposed, and all are

applied to partially specified paths, i.e., paths with sparsely

distributed way points. It is unlikely that they would be suit-

able for fully specified paths, composed of hundreds or even

thousands of closely spaced points, or for paths that contain

abrupt changes in direction.

In the manufacturing sector, methods for solving the

TOTP problem are typically designed for Cartesian three-

axis positioning systems. Since tool path geometry is often

fully known beforehand, many methods are offline, designed

for fully specified paths.

In [8] and [9], the TOTP problem was solved with the

additive manufacturing (AM) application in mind. Else-

where, paths were parameterized in terms of arc length, and

closed-form expressions, such as Bézier curves and NURBs,

were used to interpolate over path points [10, 11]. A com-

mon problem with all four of these techniques is the inabil-

ity to handle G1 discontinuities. Dong et al. [12] used a

procedural approach, where paths are sampled into equal-

length segments, the problem being solved in the trajectory

position-velocity-acceleration phase space, with G1 discon-

tinuities handled indirectly by limiting the jerk.

A common feature of all of the manufacturing sec-

tor techniques is path sampling into equal-length segments,

which is suitable for certain algorithm steps, but suboptimal

for others, particularly for the final output data. Variable spa-

tial sampling, dependent mainly on path curvature, is often

more suitable, since it can be used to provide extra detail

when necessary, in highly curved path regions, and less de-

tail in straight regions. Here, it is important to note that a path

segment is simply the line joining two adjacent path points,

while a path region is composed of multiple adjacent path

segments. Uniform space sampling also provides insufficient

time resolution at the start and end of a path, where the speed

is close to zero.

For cable-driven parallel mechanisms, the dynamic con-

straint of minimum cable tension is often dominant, espe-

cially when the end-effector undergoes high acceleration or

approaches the boundaries of its workspace. Satisfying this

constraint can be accomplished by adjusting constraints on

parameters such as acceleration or torque and verifying a

posteriori that a minimum tension is exhibited by all cables,

at all points along the trajectory. This technique is incom-

patible with the minimum-time objective because it affects

the entire trajectory, rather than the specific regions where

the tension constraint is violated. Additionally, the tuning

process must be performed separately for each path to be

followed. A technique for directly imposing the tension con-

straint during the solution of the TOTP problem is prefer-

able, since it can ensure that the minimum-time solution is

preserved.

In [13] and [14], a series of trajectories for two-DOF and

three-DOF cable-suspended parallel robots are defined para-

metrically as analytic functions of time. Minimum-tension

constraints are satisfied by substituting the trajectories into a

set of algebraic inequalities that represent constraints on ca-

ble tensions, thereby establishing bounds on the trajectory

parameters. In [15], redundant cables are used to satisfy

positive tension constraints for a three-DOF planar cable-

suspended robot.

Trevisani developed a TOTP technique that ensures pos-

itive and bounded cable tensions for straight-line and circu-

lar paths for a two-DOF cable suspended robot [16,17]. This

technique translates cable tension constraints into velocity

and acceleration constraints for the end-effector; the trajec-

tory planning technique used is based on quintic polynomi-

als.

Based on the TOTP techniques presented in [1–3], Be-

hzadipour and Khajepour developed a TOTP technique for

cable-based manipulators [18]: minimum cable tension con-

straints are expressed in the position-velocity phase plane for

a trajectory. This technique is suitable for applications where

paths and constraints are compatible with the bang-bang ap-

proach.

Based on the advantages and drawbacks of the tech-

niques listed above for solving the TOTP problem, a new

technique called minimum-time trajectory shaping (MTTS)

was developed [19]. MTTS was originally developed as

a kinematic, offline technique, which can handle arbitrary,

fully specified, three-dimensional paths, with abrupt changes

in direction, and can impose velocity, acceleration, and jerk

constraints. In this paper, we present a modified version of

MTTS, which is a dynamic technique, since minimum and

maximum cable tension constraints are included. Addition-

ally, motor torque constraints are readily converted to tension

constraints for many cable-driven mechanisms. MTTS is ap-

plied to a three-DOF cable-driven parallel mechanism for a

3D test path and it is then compared directly to the bang-bang

technique. Finally, conclusions and plans for future work are

discussed.
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2 Minimum-Time Trajectory Shaping (MTTS), For a

Three-DOF Cable-Suspended Robot

For a path specified as a series of points in xyz-Euclidean

space, we define a time vector t as an array of instants at

which the positioning system operation point P—the point at

which the task is specified—passes through each path point.

The point-to-point duration vector, or array of first-order dif-

ferences ∆t, and the second-order difference vector ∆2t, then

become

∆t =











t2 − t1
t3 − t2

...

tn − tn−1











, ∆2t =











t3 − 2t2 + t1
t4 − 2t3 + t2

...

tn − 2tn−1+ tn−2











(1)

with higher-order difference vector arrays defined likewise.

Linear interpolation is used to transform ∆2t and ∆3t to vec-

tors of the same dimension as ∆t. The MTTS optimization

problem is defined as

min
∆t

tn, tn =
n−1

∑
i

∆ti (2)

subject to constraints on velocity, acceleration, jerk, and ca-

ble tension.

MTTS is composed of several subalgorithms. The first

step of MTTS is the PATHSPLIT subalgorithm, which is

used to split paths into subpaths at abrupt changes in di-

rection, and then re-sample subpath data uniformly in Eu-

clidean space. An initial maximum-speed trajectory is then

established for each subpath, using the VCON subalgorithm,

based on the system constraints. Discontinuities in accel-

eration are corrected in the next step, the ACON subalgo-

rithm. Then, acceleration curves from and to rest are in-

tegrated with the AREST subalgorithm. Next, jerk discon-

tinuities are identified and eliminated with JCON. Finally,

control data for the subtrajectories are assembled to form a

single data set for the original path. Cable tension constraints

are integrated with MTTS at the VCON, ACON, and AREST

steps. A graphical summary of the steps of MTTS is shown

in Fig. 11.

2.1 Path Splitting (PATHSPLIT)

The PATHSPLIT subalgorithm is used to break input

paths into subpaths at abrupt changes in direction. We de-

fine βi as the segment-to-segment angle at path point i, as

shown in Fig. 2. An abrupt change in direction is defined as

a path location where the segment-to-segment angle exceeds

a threshold value βmax, which is equivalent to satisfying the

inequality

βi = cos−1

(

di ·di+1

‖di‖‖di + 1‖

)

< βmax, (3)

di = (xi+1 − xi)î+(yi+1 − yi)ĵ+(zi+1 − zi)k̂.

i i+1

i+2

di

di+1

βi

Fig. 2. The segment-to-segment angle, βi.

Depending on the application, it may or may not be

acceptable to smooth path data, before and/or after PATH-

SPLIT. MTTS was developed primarily for a large-scale

cable-driven robot for 3D printing, where the principal ob-

jective is to construct a part as accurately as possible, based

on the CAD file geometry. If this geometry exhibits sharp

edges, then boundary paths with abrupt changes in direction

must be followed. Linear interpolation should be used in this

case, because smoother interpolation techniques would pro-

duce significant error at the abrupt changes in path direction.

On the other hand, fill paths can be smoothed because they

do not define the part boundary. Smoothing can be accom-

plished by techniques such as a simple moving average filter

or cubic smoothing spline interpolation.

After path splitting has been performed, each subpath is

re-sampled into equal-length segments. If the path must be

strictly followed, linear interpolation is recommended; other-

wise, smoother interpolation methods can be used. The sub-

sequent subalgorithms VCON, ACON, JCON, and AREST

are applied separately to each subpath, though subpaths will

be referred to as paths from now on for conciseness.

2.2 Maximum-Speed Boundary Formation (VCON)

For the VCON and ACON steps of MTTS, paths consist

of n supporting points, which are not modified; instead, the

point-to-point duration vector ∆t is formed and its entries are

adjusted. The path position vector pi at each path point i, is

defined according to

pi = xî+ yĵ+ zk̂ (4)

The unit vector ek pointing along cable k from the spool to

the end-effector attachment point, is given by

ek =
p− ak

‖p− ak‖
=

1

ρk

(p− ak) , k = 1,2,3 (5)

with all quantities defined in Fig. 1. For cable k, we have

velocity ρ̇k, acceleration ρ̈k, and jerk
...
ρ k. The total linear

Cartesian velocity, acceleration, and jerk, are given by

v = |ṗ|=
√

ẋ2 + ẏ2 + ż2 (6a)

α = |p̈|=
√

ẍ2 + ÿ2 + z̈2 (6b)

j = |...p |=
√

...
x 2 +

...
y 2 +

...
z 2 (6c)
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where α is used rather than a for acceleration because a is

used to refer to path points below.

It is important to note that, except for path regions that

are straight in Euclidean space, α 6= s̈ and j 6= ...
s . A simple

trajectory to illustrate the difference between these quantities

is a circle of radius r in the xy-plane, traversed at constant

speed ṡ, such that

x =r cos t, ẋ =−r sin t, ẍ =−r cost,
...
x = r sin t (7a)

y = r sin t, ẏ = r cost, ÿ =−r sin t,
...
y =−r cost (7b)

Here, s̈ and
...
s are both zero, while α and j are both equal to

r.

Typical kinematic constraints include maximum mag-

nitudes for velocity, acceleration, and jerk for each cable

ρ̇k,max, ρ̈k,max,
...
ρ k,max, and for the Cartesian parameters in

Eq. (6), vmax, αmax, and jmax. In some cases, constraints

could also be needed for individual Cartesian directions,

and/or for angular jerk.

The objective of VCON is to establish a boundary curve

in s-ṡ, space, as is done initially when applying the bang-

bang technique. To produce this curve, we make the impor-

tant assumption that the end-effector does not need to accel-

erate to reach the maximum speed, permitted by each con-

straint, at each path point. Equivalently, we account for the

spatial interdependence among path points, while neglecting

the temporal interdependence. Mathematically, we assume

∆ti is independent from ∆ti+1 and ∆ti−1. Under this assump-

tion, the kinematic cable constraints are given by

∣

∣∆ρk,i

∣

∣/∆ti ≤ ρ̇k,max (8a)
∣

∣∆2ρk,i

∣

∣/∆t2
i ≤ ρ̈k,max (8b)

∣

∣∆3ρk,i

∣

∣/∆t3
i ≤

...
ρ k,max (8c)

where the only unknown is ∆ti. For the Cartesian constraints,

we discretize Eqs. (6) according to

vi =

√

(

∆xi

∆ti

)2

+

(

∆yi

∆ti

)2

+

(

∆zi

∆ti

)2

(9a)

αi =

√

(

∆2xi

∆t2
i

)2

+

(

∆2yi

∆t2
i

)2

+

(

∆2zi

∆t2
i

)2

(9b)

ji =

√

(

∆3xi

∆t3
i

)2

+

(

∆3yi

∆t3
i

)2

+

(

∆3zi

∆t3
i

)2

(9c)

i = 1 . . .n− 1

leading to the constraints

vi ≤ vmax, αi ≤ αmax, ji ≤ jmax. (10)

The path position si is given by

si =
i

∑
i=1

√

(∆xi)
2 +(∆yi)

2 +(∆zi)
2, (11)

where it is important to note that

vi = ∆si/∆ti, αi 6= ∆2si/∆t2
i , ji 6= ∆3si/∆t3

i (12)

because quantities αi and ji represent the total linear accel-

eration and jerk, respectively, while ∆2si/∆t2
i and ∆3si/∆t3

i

represent tangential acceleration and jerk. A similar devel-

opment could be used to establish constraints on total angular

kinematic quantities.

The geometric significance of this process is to be high-

lighted. The total linear acceleration constraint only limits

acceleration due to path curvature, or equivalently, acceler-

ation due to change in the direction of the velocity vector.

Similarly, the jerk constraint does not affect straight-line mo-

tion at this stage, but does have an impact in path locations

where there is high jerk due to path geometry, such as the

transition from a circular round to a straight line.

In many cases, dynamic constraints, such as restrictions

on actuator torque and cable tension, are also needed for

cable-driven robots. For simple setups where actuators drive

spools of cable, the torque Tk is given by Tk = rkFk, where rk

is the radius of spool k and Fk is the tension force in cable k.

Therefore, in many cases, all of the dynamic constraints can

be imposed using the equations developed below.

As shown in [13], Newton’s second law of motion for a

three-DOF spatial cable-suspended robot is given by

Mτττ = g−ααα (13)

where

M =





m1 m2 m3

m4 m5 m6

m7 m8 m9



=
[

e1 e2 e3

]

,

τττ =
[

τ1 τ2 τ3

]T
=

1

m

[

F1 F2 F3

]T
,

g =
[

0 0 g
]T

, ααα =
[

ẍ ÿ z̈
]T

,

with ek being the unit vector pointing along cable k from the

spool to the end-effector attachment point, defined in Eq. (5)

and shown in Fig. 1. The variable g denotes acceleration due

to gravity and τττ is the vector of cable tensions per unit mass

m of the end-effector.

Using the assumption that was applied for the kinematic

constraints listed above, namely, that the end-effector does

not need to accelerate to reach the maximum speed, Eq. (13)

is discretized according to

Miτi =





−∆2xi/∆t2
i

−∆2yi/∆t2
i

g−∆2zi/∆t2
i



 . (14)
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Dropping the i subscript, we obtain

m1τ1 +m2τ2 +m3τ3 =−∆2x/∆t2

m4τ1 +m5τ2 +m6τ3 =−∆2y/∆t2

m7τ1 +m8τ2 +m9τ3 =−∆2z/∆t2 + g

(15)

though it is important to note that all quantities of Eq. (15),

except for g, are different for every path point i.

The minimum tension constraint τmin is imposed by set-

ting τk = τk,min for each point along a path. Then, Eq. (15)

is solved analytically for the other unknowns, which consist

of the tensions in the other cables and the quantity ∆t. The

maximum tension constraint is imposed in the same manner,

thus producing six tension constraints on ∆t for each path

point i. To render the solutions more compact, the following

intermediate variables are introduced

D1 = m2m6 −m5m3, N1 = m6∆2x−m3∆2y

D2 = m1m6 −m3m4, N2 = m2∆2y−m5∆2x

D3 = m1m5 −m4m2, N3 = m1∆2y−m4∆2x

R = m7D1 −m8D2 +m9D3.

(16)

The minimum tension in Cable 1 is produced by setting

τ1 = τmin and solving Eq. (15) for the vector of unknowns
[

τ2 τ3 ∆t
]T

, producing

∆t =

√

∆2zD1 −m8N1 −m9N2

gD1 +Rτmin

(17a)

τ2 =
N1/∆t2 −D2τmin

D1
(17b)

τ3 =
N2/∆t2 +D3τmin

D1
. (17c)

The minimum tensions for the other cables are produced sim-

ilarly, leading to the three equations

∆t =

√

∆2zD1 −m8N1 −m9N2

gD1 +Rτmin

(18a)

∆t =

√

∆2zD2 −m7N1 −m9N3

gD2 −Rτmin

(18b)

∆t =

√

∆2zD3 +m7N2 −m8N3

gD3 +Rτmin

(18c)

which are applied to each point i of the path. Maximum cable

tension constraints are imposed by replacing τmin by τmax in

Eq. (18).

It is important to correctly interpret the restrictions τmin

and τmax place on ∆t. For every path point, either the maxi-

mum or the minimum tension constraint will produce a mini-

mum restriction on ∆t, with the other constraint producing an

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
������������������������������
���������������
���������������
���������������

0

τ

s

τmin

τmax

fk

∆2ρk ≥ 0

∆2ρk < 0

Fig. 3. Valid tension ranges for joint k along one path, during VCON

imaginary value for ∆t, which can be ignored. This conclu-

sion is now justified, based on the equations used to produce

the tension constraints.

In, Eq. (14), we can separate the tension due to gravita-

tional and inertial effects by writing

τττi = M−1
i g−M−1

i αααi (19)

where M−1
i αααi is equal to

[

ρ̈i,1 ρ̈i,2 ρ̈i,3

]T
, the vector of

cable accelerations. For path point i and cable k, we can

therefore write

τi,k = fi,k − ρ̈i,k ≈ fi,k −
∆2ρi,k

∆t2
i

(20)

where fk is the gravitational contribution to the force in each

cable, shown in Fig. 3 along one path. Solving for ∆ti, we

have

∆ti =

√

∆2ρi,k

fi,k − τi,k
. (21)

We assume that the path is chosen such that

τmin ≤ fi,k ≤ τmax (22)

as shown in Fig. 3. Therefore, to produce a positive real ∆ti,

the tension constraints for a particular point i on a trajectory

are restricted as follows

τmin ≤τi,k ≤ fi,k if ∆2ρi,k≥0 (23a)

fi,k <τi,k ≤τmax if ∆2ρi,k<0. (23b)

At each point, either the maximum or the minimum ten-

sion constraint produce a valid restriction on ∆ti; the other

constraint produces an imaginary ∆ti.

As a simple example, we consider the case of a single

cable raising and lowering a weight. If the mass is acceler-

ating upward at point i, i.e., if ∆2ρ is negative, the tension

force in the cable must be greater than the weight force.

The minimization problem for VCON is given by

Eq. (2), subject to constraints based on Eqs. (8), (10), and
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s

ṡ

∆ta ,∆xa,∆ya,∆za

∆tb ,∆xb,∆yb,∆zb

Fig. 4. Illustration of the ACON subalgorithm.

(18). The calculations needed to produce ∆t are all explicit

and straightforward. As mentioned above, at this stage, ∆t

represents a maximum-speed envelope for the path, which

can be expressed in s-ṡ space. Subsequent steps of MTTS

are constrained to shape the trajectory within this envelope.

For the test path used in the case study, the blue dotted line

of Fig. 11 corresponds to this envelope.

2.3 Elimination of Acceleration Discontinuities

(ACON)

The ACON subalgorithm is used to apply the same con-

straints as in Subsec. 2.2, except we now consider that the

end-effector does need to accelerate to reach the maximum

allowed speed at each path point. Equivalently, the maxi-

mum allowed speed at path point i is assumed to depend on

the speed at points i− 1 and i+ 1.

ACON operates using the following procedure. All path

points in s-ṡ are initially assumed to be constraint-violating.

The local minimum in s-ṡ, among the constraint-violating

points, is identified, and constraint-satisfying curves are

swept leftward and rightward from this point, until they inter-

sect the maximum-speed boundary curve. The points along

these constraint-satisfying curves are removed from the list

of constraint-violating points, and the procedure continues

until this list is empty. It is important to note that, while

speed-increase jerk constraints are imposed using this proce-

dure, speed-decrease jerk is dealt with using JCON. Figure 4

shows the curve-sweeping procedure for one local minimum

in s-ṡ.

All constraints imposed during VCON used the approx-

imation dt ≈ ∆ti for point i. Under the new assumption, we

use the approximation dt ≈ (∆ti +∆ti+1)/2. Applying this

assumption to Eq. (8a), we obtain

∣

∣(∆ρk,i +∆ρk,i+1)/2
∣

∣

(∆ti +∆ti+1)/2
≤ ρ̇k,max. (24)

It becomes clear that, if this constraint is satisfied at points

i and i+ 1, then it is also satisfied for Eq. (24). The same

conclusion can be drawn for all constraints at the velocity

level.

The acceleration constraint, Eq. (8b), becomes

∣

∣∆ρk,b/∆tb −∆ρk,a/∆ta
∣

∣

(∆ta +∆tb)/2
≤ ρ̈k,max. (25)

where we set a = i and b = i+ 1 for conciseness. Assuming

that ∆ta is known, we can produce the constraint relations

2(∆ρk,b∆ta −∆ρk,a∆tb)≤
∆ta∆tb(∆ta +∆tb)ρ̈k,max (26a)

2(∆ρk,b∆ta −∆ρk,a∆tb)≥
−∆ta∆tb(∆ta +∆tb)ρ̈k,max (26b)

where ∆tb is the only unkown. The minimum, real, positive

solution for ∆tb is chosen among the four solutions to these

two quadratic equations. This solution is guaranteed to be

the minimum solution for ∆tb that respects Eq. (25). A proof

of this assertion is now provided.

Since a is a point on an acceleration sweeping curve, the

speed at a is below the s-ṡ curve, shown in Fig. 4. Equiv-

alently, if we let a = i in Eq. 8b, then ∆ta > ∆ti. Therefore,

the solution ∆tb = ∆ta will always satisfy Eqs. (26), and there

must be at least one positive real solution that respects these

constraints.

We first consider positive ∆ρk,b. In Eq. (26b), if ∆ρk,a is

also positive, then positive ∆tb is only produced if

∆tb ≥
∆ρk,b

∆ρk,a
∆ta. (27)

Therefore, solutions to Eq. (26b) can only cause a decrease

in joint speed under these conditions, and they can therefore

be discarded. If ∆ρk,a is negative, no positive real solution

for ∆tb exists.

Considering Eq. (26a), the quadratic roots are given by

∆tb =
−B±

√
B2 − 4AC

2A
, A = ∆taρ̈k,max, (28)

B = ∆t2
a ρ̈k,max + 2∆ρk,a, C =−2∆ta∆ρk,b.

We see that both roots are positive only if B is negative and

0≤ 4AC ≤ B2. However, ∆ρk,b is positive, so 4AC is negative

and there will be one positive real solution for ∆tb. Therefore,

the optimal value that satisfies Eqs. (26) lies in the range

0 ≤ ∆tb ≤
∆ρk,b

∆ρk,a
∆ta (29)

if both ∆ρk,a and ∆ρk,b are positive. If ∆ρk,a is negative, the

term 4AC remains the same, so there is still only one positive

real solution for ∆tb. Additionally, we know that the optimal

∆tb will satisfy ∆tb ≤ ∆ta, due to constraint application dur-

ing VCON. A graphical interpretation of the application of

Eqs. (26) is shown in Fig. 5.
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0

ρ̇k

sa b

0 ≤ ∆tb ≤
∆ρk,b

∆ρk,a

∆ta

∆tb =
∆ρk,b

∆ρk,a

∆ta

Fig. 5. Sweeping an acceleration curve for joint k

A similar line of reasoning can be used to show that, for

negative ∆ρk,b, Eq. (26b) yields the only positive real solu-

tion for ∆tb, within the permitted conditions.

The total linear Cartesian acceleration, Eq. (6b), is ap-

proximated by

ẍ ≈ ∆xb/∆tb −∆xa/∆ta

(∆ta +∆tb)/2
, ÿ ≈ ∆yb/∆tb −∆ya/∆ta

(∆ta +∆tb)/2

z̈ ≈ ∆zb/∆tb −∆za/∆ta

(∆ta +∆tb)/2
,
√

ẍ2 + ÿ2 + z̈2 ≤ αmax. (30)

Equations (30) are combined to produce a quartic equation in

∆tb. The roots of this equation are found using Ferrari’s solu-

tion, reported by Cardano in [20]. This method was found to

be about twice as fast computationally as the ROOTS func-

tion in MATLAB. Again, the minimum, real, positive solu-

tion for ∆tb is chosen, which is guaranteed to exist because

we know ∆tb = ∆ta satisfies Eq. (30).

The cable tension constraints are formed similarly, by

approximating Eq. (13) as

m1τ1 +m2τ2 +m3τ3 =
∆xa/∆ta −∆xb/∆tb

(∆ta +∆tb)/2
(31a)

m4τ1 +m5τ2 +m6τ3 =
∆ya/∆ta −∆yb/∆tb

(∆ta +∆tb)/2
(31b)

m7τ1 +m8τ2 +m9τ3 =
∆za/∆ta −∆zb/∆tb

(∆ta +∆tb)/2
+ g. (31c)

The additional intermediate variables

N1 = m2∆yb −m5∆xb, N4 = m3∆ya −m6∆xa

N2 = m6∆xb −m3∆yb, N5 = m5∆xa −m2∆ya

N3 = m1∆yb −m4∆xb, N6 = m1∆ya −m4∆xa

Sk = gDk − (−1)k τkR, k = 1,2,3

(32)

are introduced; variables shown in Eq. (16) are still valid,

except for N1, N2, and N3.

Equations (31) are solved analytically six times: each

time, the tension τk in one cable is set to τmin or τmax, the

unknowns being the tensions in the other two cables and ∆tb.

This leads to six quadratic equations, two for each cable, de-

fined by

A∆t2
b +B∆tb +C (33a)

1







A = ∆taS1

B = ∆t2
a S1 + 2(∆zaD1 +m8N4 +m9N5)

C = 2∆ta (m9N2 +m8N1 −∆zbD1)
(33b)

2







A = ∆taS2

B = ∆t2
a S2 + 2(∆zaD2 +m7N4 −m9N6)

C = 2∆ta (m9N3 +m7N1 −∆zbD2)
(33c)

3







A = ∆taS3

B = ∆t2
a S3 + 2(∆zaD3 −m7N5 −m8N6)

C = 2∆ta (m8N3 −m7N2 −∆zbD3) .
(33d)

The two quadratic equations for each cable define a valid

range for ∆tb, within which the tension constraints for that

cable are satisfied. This is in contrast to VCON, where only

a minimum value for ∆t was found. A similar line of reason-

ing to that used for Eqs. (26) can be applied to Eqs. (33) to

interpret the solutions to these equations.

Firstly, we can claim that ∆tb = ∆ta is a solution that

respects all tension constraints, because this equality repre-

sents a point below the s-ṡ curve, and thus a point in between

the fk and the valid tension constraint for a particular point,

as shown by the valid ranges for τ in Fig. 3.

Applying Eq. (20) to two adjacent points a and b, we

have

∆ρk,b/∆tb −∆ρk,a/∆ta

(∆ta +∆tb)/2
= fk,ab − τk,ab, (34)

where the subscript ab indicates the mean value of a property

between points a and b. Eq. (34) is rearranged to produce the

quadratic equation of Eq. (33a), with coefficients

A =∆ta ( fk,ab − τk,ab) , (35)

B =∆t2
a ( fk,ab − τk,ab)+ 2∆ρk,a, C =−2∆ρk,b∆ta.

We see that Eq. (35) has the same form as Eq. (28).

Therefore, a minimum restriction on ∆tb is always produced:

for positive ∆ρk,b, the minimum tension constraint will pro-

duce this restriction; for negative ∆ρk,b, the maximum ten-

sion constraint will produce this restriction. The analysis of

the four roots to the two quadratic equations in ∆tb is essen-

tially the same as that for Eq. (28). The tension constraint

application is shown in Fig. 6.

The remaining constraints to be imposed with ACON

are the jerk constraints. A similar procedure to that used

to develop the acceleration constraints would entail the con-

sideration of three trajectory points, a, b, and c, leading to

three- and six-degree polynomial equations for the cable jerk

and the total linear jerk, respectively. Additionally, we would

need to guarantee that two of the three points under consider-

ation are constraint-respecting. This formulation is possible,

but the jerk constraints rarely need to be strictly followed, so

an approximate, faster method is called for.
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a b

0

τ

τk

s

τmin

τmax

fk
0 ≤ ∆tb ≤

∆ρk,b

∆ρk,a

∆taτk,a

Fig. 6. Tension constraints for joint k, imposed during ACON, for

negative ∆ρk,b

For each cable k, we can approximate the jerk equations

as

1

6

...
ρk,max (∆tb)

3 +
1

2
ρ̈k,a (∆tb)

2

+ ρ̇k,a (∆tb)−∆ρk,b = 0 (36a)

−1

6

...
ρk,max (∆tb)

3 +
1

2
ρ̈k,a (∆tb)

2

+ ρ̇k,a (∆tb)−∆ρk,b = 0 (36b)

which are solved to find six values of ∆tb; the minimum

positive real solution is again kept. The values of ρ̈k,a and

ρ̇k,a are updated following the selection of each point on the

constraint-satisfying curve in s-ṡ. If the curve starts at a lo-

cal minimum, ρ̈k,a is set to zero at this point. Otherwise,

it is computed based on the adjacent segment in the oppo-

site direction to the sweeping curve, since this point must be

constraint-satisfying.

The Cartesian tangential jerk constraint is imposed ac-

cording to

1

6

...
s max (∆tb)

3 +
1

2
s̈a (∆tb)

2 + ṡa (∆tb)−∆sb = 0. (37)

The purpose of the jerk constraints presented here is to

prevent abrupt changes in acceleration, which are character-

istic of the bang-bang method and can cause many undesir-

able effects. Based on the results presented in the paper,

MTTS is successful in this respect, though it is not recom-

mended for problems where jerk constraints are dominant or

when they need to be strictly adhered to.

When
...
s max is the only jerk constraint, the allowed ∆tb

ranges for all constraints are guaranteed to overlap, as shown

in Fig. 7. As explained in Subsec. 2.2, when the
...
s max con-

straint is imposed, only increases in speed ṡ are allowed when

computing ∆tb, so we know that 0 ≤ ∆tb ≤ ∆ta, which must

overlap with the acceleration constraints.

On the other hand, when joint jerk constraints
...
ρ k,max

are included, decreases in speed could be called for, with

∆tb > ∆ta. Therefore, there is no guarantee that the allowed

ranges for ∆tb will overlap, and constraint violations can oc-

cur. Such violations can be eliminated through iteration of

ACON.

It is important to specify which constraints depend on

the direction of travel along the path. The acceleration and

ρ̈1

ρ̈2

ρ̈3

τ1

τ2

τ3

α

...
s

0 ∆ta ∆tb ∞

∆tb range that respects all constraints

optimal ∆tb

valid ∆tb range for each constraint

∆tb =
∆ρkb

∆ρka

∆ta

Fig. 7. The application of constraints to determine ∆tb, during

ACON

jerk constraints are symmetric, because their application is

identical, whether the path is traversed one way or the other,

as shown in Fig. 4. Tension constraint application depends

on the traversal direction, however. Therefore, again con-

sulting Fig. 4, for Eqs. (31) to be valid, variables with a sub-

scripts must always apply to the left path segment, and b

variables to the right segment. As a result, when generating

leftward acceleration curves—which will produce decelera-

tion when the path is followed—the a and b quantities are

interchanged for application of the tension constraint. Equa-

tions (31) are thus solved for ∆ta, which applies to the same

segment as the ∆tb values found through application of the

acceleration and jerk constraints.

In summary, for all constraints at the acceleration level,

including tension constraints, a minimum value for ∆tb is

found. In fact, for each constrained quantity, a maximum

value for ∆tb will also exist, though in some cases it will be

infinite. We know that ∆tb = ∆ta will satisfy all constraints at

the acceleration level, so the allowed ranges for ∆tb for each

constrained quantity must overlap. This is shown graphically

in Fig. 7.

For each point of a constraint-satisfying acceleration

curve, the highest value of ∆tb, computed using Eqs. (26),

(30), (33), (36), and (37), is used to replace the correspond-

ing point on the s-ṡ curve, if it is larger. Then, point b re-

places point a and the procedure is repeated for the next tra-

jectory segment. These steps continue until the constraint-

generated ∆tb is smaller than the corresponding point on s-ṡ.

The green dashed line of Fig. 11 shows the s-ṡ curve for the

test path used in the case study, after ACON is applied.
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2.4 Acceleration From and to Rest Curves (AREST)

Acceleration from and to rest should be considered sep-

arately, because the evenly spaced position data used up

to this point have insufficient resolution to produce smooth

curves at low speeds in the time domain. AREST is simi-

lar to ACON, except that it operates via even time-sampling,

rather than even position-sampling. Therefore, AREST is the

first step of MTTS that modifies path-point locations: evenly

time-sampled points are added at the start and end of the tra-

jectory.

Equations (30) and (33) still apply, except ∆xb, ∆yb, and

∆zb are now unknown and ∆ta and ∆tb are both equal to a

chosen time-sampling rate. However, the relationship be-

tween x, y, and z is known everywhere on the path. To avoid

singularities in the solution procedure and ensure numerical

stability, the coordinate axis that exhibits the largest rate of

change for the current path point is chosen as the independent

variable, to be included in the vector of unknowns. For ex-

ample, if |∆yb|> |∆xb| and |∆yb|> |∆zb|, we can replace the

vector
[

∆xb ∆yb ∆zb

]T
with ∆yb

[

C1 1 C2

]T
, where C1

and C2 are known constants. The acceleration constraint then

becomes

1

(∆t)2

√

√

√

√

(C1∆yb −∆xa)
2 +(∆yb −∆ya)

2

+(C2∆yb −∆za)
2

≤ α∗
max (38)

where α∗
max is used to denote a local maximum acceleration,

which must not increase by more than
...
s max∆t from one point

to the next, to ensure that the jerk constraint is also satisfied.

Cable acceleration and jerk constraints are simpler, and are

imposed similarly, solving for ∆ρk,b in Eq. (26).

The cable tension equations become

m1τ1 +m2τ2 +m3τ3 =
∆xa −C1∆yb

(∆t)2
(39a)

m4τ1 +m5τ2 +m6τ3 =
∆ya −∆yb

(∆t)2
(39b)

m7τ1 +m8τ2 +m9τ3 =
∆za −C2∆yb

(∆t)2
+ g. (39c)

which are solved for ∆yb six times, setting one of the cable

tensions to τmin or τmax each time, with the vector of un-

knowns being ∆yb and the tensions in the other two cables.

The solution procedure is similar to that used for ACON.

Next, the minimum value of the magnitude of ∆yb found

using Eqs. (38), (39), and any other constraint equation

needed, is selected, and ∆sb is computed to generate the next

point on the acceleration curve. The process iterates until the

s-ṡ curve is intersected.

AREST is applied at the start of the path, and at the end

of the path in reverse. As was the case for ACON, the ten-

sion constraints depend on the direction traveled along the

path but the acceleration and jerk constraints do not. After

AREST completes, linear interpolation along the s-ṡ curve

v0,v̇0

v1,v̇1

Fig. 8. The JCON subalgorithm

is used to produce new positioning data, equally sampled in

time. The magenta dash-dot line of Fig. 11 shows the s-ṡ

curve for the test path used in the case study, after AREST is

applied.

2.5 Elimination of Jerk Discontinuities (JCON)

As mentioned above, ACON cannot be applied to ad-

dress speed-decrease jerk violations. Therefore, a different

technique is used to eliminate this type of jerk: cubic interpo-

lating polynomials at the velocity level are used to distribute

jerk where the maximum jerk is exceeded; this is achieved

by updating the ∆t vector. In each path region where the jerk

is to be smoothed, the sign of the tangential acceleration is

not allowed to change. Equivalently, no inflection point is

permitted in the polynomial curve. Without this restriction,

uneven jerk distribution and unwanted speed variations could

result. The JCON subalgorithm is illustrated in Fig. 8.

The locations of jerk violations are first identified along

a path. Subsets of adjacent points are then formed among

the identified points. Each subset is gradually expanded by

incrementing the leftmost and rightmost points left and right,

respectively, until the maximum jerk magnitude produced

by the interpolating polynomial respects the jerk constraint.

Leftward expansion of the interval is halted if a change in ac-

celeration sign is encountered; rightward expansion is halted

on the same condition, but separately. Once the interpolation

interval ∆t∗ has been found, the speed over this interval is

given by

v = Dλ3 +Cλ2 +Bλ+A, 0 ≤ λ ≤ 1 (40)

A = v0, C = 3v1 − v̇1∆t∗− 3A− 2B,

B = v̇0∆t∗, D = v1 −A−B−C

where v0, v1, v̇0, and v̇1 are the velocity and tangential accel-

eration at the start and end of the interval, and λ is normal-

ized time. This procedure is approximate, since the change

in acceleration is computed based on the point-to-point du-

rations, and these durations will change after application of

the polynomial interpolant. However, the durations can only

increase, so the jerk estimate is slightly higher than the final

jerk exhibited. Since the ∆t vector is modified using this pro-

cedure, linear interpolation among ∆t and ∆s is again used to

restore equal-time sampling. The solid red line of Fig. 11

shows the s-ṡ curve for the test path used in the case study,

after JCON is applied.

The primary JCON technique can fail to satisfy the neg-

ative jerk constraint in some situations. However, a sec-

ondary technique can be invoked to guarantee that the jerk
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a b c d e f

ṡ

t

before JCON

JCON modifications

...
s <−

...
s max

Fig. 9. The secondary technique applied during JCON

constraint is satisfied. Figure 9 shows an example where the

cubic polynomial curve technique would fail. In this case,

JCON would begin with the jerk violation detected at point

c, and proceed leftward to point b and rightward to point e,

both of which are points where the acceleration sign changes.

The primary JCON method would then attempt to construct

a concave-down curve from point c to point d. Such a curve,

which maintains velocity and acceleration continuity, and

satisfies the jerk constraint, is not possible in this case.

This failure is easily detected, at which point JCON

would revert to the secondary method. Between points b and

e, subranges of points where the jerk is negative are first iden-

tified, with one such range, b to d, being identified in this

case. Linear interpolation in t-ṡ is used across each range

identified, as shown by the dashed line of Fig. 9.

Following the linear interpolation, the subrange b to e

is verified for jerk violations. If any are detected, JCON first

attempts to use the primary method; if this does not work, the

secondary method is reapplied. This iterative process contin-

ues until the negative jerk constraint is respected everywhere

in the range. This technique is guaranteed to eliminate all

negative jerk violations because the secondary method is ca-

pable of removing all negative jerk.

In most cases, the primary JCON method, the cubic

polynomial curve, will work and the secondary method is

unnecessary. For example, the secondary method is never

used for the test path shown in this paper.

As was the case for positive jerk in ACON, tangential

jerk can be dealt with using JCON, as presented. However,

the technique would need to be modified to include joint jerk

constraints. The main problem that can occur here relates

to path regions where ρ̇k crosses zero. The application of

the jerk constraint as presented would result in suboptimal

path modifications in these path regions. In some cases, the

jerk constraint could call for the sign of ρ̇k to change at a

particular path location, which is not allowed. Therefore, to

use JCON for constraints on
...
ρ k, a subalgorithm would be

needed to treat cases where modifications are called for in

path regions where ρ̇k = 0.

Following JCON, data for all subpaths produced by

PATHSPLIT are assembled and converted to the desired out-

put format. For example, Cartesian-to-joint-space conver-

sion can be performed, or feedrates can be easily computed,

since positioning data are equally sampled in time. Reassem-

bly is accomplished trivially via array concatenation, which

is also possible because data are equally sampled in time.

Deceleration to zero speed is thus automatically imposed at

Table 1. Spool attachment points for a 3-DOF cable-driven robot

Cable # x (m) y (m) z (m)

1 5.0655 -1.9978 -0.0652

2 -5.1958 -2.3085 -0.0096

3 0.1302 4.3064 0.0747

all abrupt changes in direction that were detected with PATH-

SPLIT.

3 Case Study: A Three-DOF Cable-Suspended Robot

The MTTS algorithm, adapted to include tension con-

straints, is applied to a test path in the workspace of a three-

DOF spatial cable-suspended robot available in the Labora-

toire de robotique at Université Laval. Analytic solutions to

the cable tension equations, Eqs. (15), (31), and (39), are

found using Maple 14. All other programming is performed

with MATLAB r2011b.

The robot has an architecture similar to that shown in

Fig. 1, with the spools forming a close-to-equilateral triangle,

mounted about 6 m above the floor on the walls of a room

7 m high, 12 m long, and 10 m wide. A coordinate frame

is placed at the centroid of the three attachment points, with

the z-axis pointing downward. The spool attachment point

positions in this frame are listed in Tab. 1.

The test path is the 3D curve shown in Fig. 10(a),

5.143 m long, with the y-coordinates produced according to

y =
1

2
cos

(

7πσ

2

)

, 0 ≤ σ ≤ 1 (41)

where σ is the normalized arc length for the curve in

Fig. 10(c). The path is supplied to MTTS as arrays of x, y

and z data, with the constraints

vmax = 2 m/s αmax = 4 m/s2 ...
s max = 50 m/s3

τmin = 2 N/kg τmax = 8 N/kg βmax = π/6 (42)

where βmax is the maximum allowed angle between two ad-

jacent line segments before path splitting occurs, as defined

in Fig. 2 and Eq. 3. The cable tension constraints are equiv-

alent to an allowed tension range of 2–8 N, for each cable,

with an end-effector of mass 1 kg.

Path data are first resampled into 1 mm-long segments,

using linear interpolation. One abrupt change in direction is

then detected using the PATHSPLIT subalgorithm; VCON,

ACON, AREST, and JCON are applied separately to each

subpath, as described Subsec. 2.1. Figure 11 shows the s-

ṡ curve following each step of MTTS, for both subtrajecto-

ries. Output data are arrays of x, y and z coordinates, equally

sampled in time, in this case with a resolution of 0.016 s.

Figure 12 shows the 5.104 s trajectory produced using the

constraints of Eq. 42.
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Fig. 10. Test path: (a) 3D plot; (b) Projection on the xy-plane; (c)

Projection on the xz-plane.
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Fig. 11. Steps of the MTTS algorithm, for the path shown in Fig. 10,

with all constraints listed in Eq. (42) active.

To establish the optimality and highlight the advantages

of MTTS, the bang-bang method is also used to solve the

TOTP problem for the path shown in Fig. 10. The set of con-

straints is reduced by eliminating αmax and
...
s max, because the

bang-bang technique cannot impose these constraints. This

leaves the tension and linear velocity constraints.

A brief overview of the application of the bang-bang

method to a 3-DOF cable-suspended positioning mechanism
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Fig. 12. Trajectory parameters for the path shown in Fig. 10, using

MTTS with all constraints listed in Eq. (42) active.

is provided here. More detail on this method, including its

application to a different cable-driven robot, can be found

in [1, 18].

The central idea to the bang-bang technique is that each

constraint equation can be expressed as a function of the dis-

tance traveled along the path s and its derivatives. For our

3-DOF cable-suspended mechanism, we have the inequality

relations

τk,min ≤ c1k(s)s̈+ c2k(s, ṡ)≤ τk,max. (43)

To determine the functions c1k and c2k, we express x, y,

and z parametrically as functions of s in Eq. 13 to obtain

m1τ1 +m2τ2 +m3τ3 =−d2x

ds2
ṡ2 − dx

ds
s̈ (44a)

m4τ1 +m5τ2 +m6τ3 =−d2y

ds2
ṡ2 − dy

ds
s̈ (44b)

m7τ1 +m8τ2 +m9τ3 =−d2z

ds2
ṡ2 − dz

ds
s̈− g (44c)

An analytical solution to Eq. (44) for τ can be found without

numerically specifying the entries of M. The tension in cable

k can then be represented by

τk =C1k s̈+C2kṡ2 +C3kg. (45)

where the constants C1k, C2k, and C3k depend only on the

entries of M and the first- and second-order derivatives of
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Fig. 13. The bang-bang method, for the path shown in Fig. 10, with

no constraints on jerk or acceleration.

x, y, and z with respect to s, shown in Eq. (44), which are

known at every point along the path.

Combining Eqs. (43) and (45) yields

τk,min ≤C1k s̈+C2kṡ2 +C3kg ≤ τk,max, (46)

which can be expressed in the form

fk(s, ṡ)≤ s̈ ≤ gk(s, ṡ) (47)

where

fk(s, ṡ) =















τk,min −C2kṡ2 −C3kg

C1k

, C1k > 0

τk,max −C2kṡ2 −C3kg

C1k

, C1k < 0

(48a)

gk(s, ṡ) =















τk,max −C2kṡ2 −C3kg

C1k

, C1k > 0

τk,min −C2kṡ2 −C3kg

C1k

, C1k < 0

. (48b)

The maximum permissible speed at each path point can be

found by setting

fk(s, ṡ) = gl(s, ṡ) (49)

for cables k and l, with k 6= l. For each path point, six equa-

tions are found and solved, producing maximum allowed val-

ues for ṡ. The lowest allowed ṡ for each path point then

becomes a point on the maximum-permissible speed curve.

Applying this procedure to the path shown in Fig. 10 pro-

duces the s-ṡ curve shown in Fig. 13.

With the initial s-ṡ curve identified, the next step is to

identify switching points along this curve, from which accel-

eration curves will be swept by integrating s̈, while respect-

ing the six constraint relations. In [1], the identification of

these switching points is described as the most difficult step

of the bang-bang method, and the difficulty increases with

 

 

0.5

0.5

1

1

1.5

1.5

2

2

2

2.5 3 3.5 4

4

6

−100

100

0

0

0

0

0

5

10

t [s]

τmin,τmax Cable 1 Cable 2 Cable 3

ṡ
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Fig. 14. Trajectory parameters for the path shown in Fig. 10, using

the bang-bang method, with no jerk or acceleration constraints.

the number of switching points needed. There, a trial-and-

error approach is proposed, with alternating acceleration and

deceleration curves being produced when moving from left

to right in s-ṡ space. Here, we use an alternate approach, sim-

ilar to that described in ACON, where acceleration curves

are swept rightward and leftward from local minima in s-ṡ,

producing the constraint-satisfying curve of Fig. 13. Kine-

matic parameters and cable tensions for this curve are plotted

in Fig. 14. We can see that a constraint violation occurs at

one location along the path, which corresponds to the abrupt

change in direction.

To obtain a trajectory for direct comparison to the bang-

bang method, MTTS is applied to the test path a second time,

neglecting jerk and total acceleration constraints. Addition-

ally, the bang-bang method is modified by using PATHSPLIT

to prevent the constraint violation seen in Fig. 14: the test

path is split into two subpaths, which are submitted sepa-

rately to the bang-bang algorithm, after which the trajectory

is reassembled, in much the same way that path splitting

works for MTTS.

These modifications are applied to produce the trajecto-

ries shown in Fig. 15, where a direct comparison between the

two techniques can be made. We can see that the two trajec-

tories are quite similar, with the times of travel being 4.432 s

for the bang-bang technique, and 4.544 s for MTTS. There-

fore, it is reasonable to claim that MTTS produces trajecto-

ries that are nearly time-optimal. The discrepancy between

the two techniques is likely caused by the discretization and

interpolation used in MTTS. For example, MTTS requires a

discrete number of path points at all stages. During certain

steps, the trajectory is re-sampled, and the number of points
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Fig. 15. The bang-bang method compared to MTTS, for the path

shown in Fig. 10, with no jerk or acceleration constraints.

is always rounded up, to prevent new constraint violations

from occurring. This effect can be seen in Fig. 15(a), where

the MTTS curve is nearly always slightly below the bang-

bang curve.

One might expect the acceleration shown in Figs. 12 and

14 to be negative when the speed is decreasing. However, a

decrease in speed only contributes to negative tangential ac-

celeration s̈, whereas the total acceleration α is always posi-

tive.

The effect of the jerk constraint imposed by MTTS is

visible in Figs. 11 and 12, where we see that this constraint

is active along several regions of the path. It is interesting

to note the geometric significance of the double local min-

imum in ṡ, visible in Fig. 11 near s = 1.5. This feature is

caused by the jerk constraint, as the end effector passes from

a straight-line path in projected xz-space, to the 0.1 m round,

and back to a straight-line path in projected xz-space, as seen

in Fig. 10(c). At each of these two transitions, there is a cur-

vature discontinuity on the path, leading to an abrupt change

in acceleration, whose magnitude is limited by imposing the

tangential jerk constraint.

Another important factor to consider when comparing

the two methods is computational time. Required computa-

tional times were 2.4 s and 2.3 s, for the bang-bang method

and MTTS, respectively, for the trajectories shown in Fig. 15,

using an Intel Core i7-2720QM processor (2.2 GHz, 3.3 GHz

turbo). Therefore, the computational burden for the two

techniques is about the same. For MTTS, acceleration and

jerk constraints were rendered inactive by simply raising

them, with all constraint-verification computations still tak-

ing place. Indeed, when the acceleration and jerk constraints

of Eq. (42) are also included in MTTS, producing the trajec-

tory of Fig. 12, the computational time is still 2.3 s. The most

computationally intensive constraints for MTTS are those on

cable tension, because analytic solutions to 3× 3 systems of

equations are repeatedly evaluated. The tension constraints

can be turned off in MTTS, and when this is done, the com-

putational time reduces to 1.0 s for the test path.

Each technique should be applied to a large data set of

paths to further investigate the computational cost and es-

tablish robustness. Both techniques are readily adaptable to

parallel computation, where parallelization could be applied

by submitting different paths, or even different subpaths pro-

duced using PATHSPLIT, to different processors.

For this case study, the output data are sampled at

0.016 s, though other formats and sampling rates can eas-

ily be produced. For example, for the cable-driven robot be-

ing studied, in some cases it is preferable to provide cable-

length data sampled at a higher rate. These data can be read-

ily produced by solving the inverse displacement problem

and resampling using cubic spline interpolation. Linear in-

terpolation should never be used when resampling at a higher

rate, since large oscillations in acceleration, jerk, and tension

would be produced. At this stage, cubic spline interpolation

in the time domain will not cause significant deviation from

the path, because points are densely spaced around abrupt

changes in direction.

4 Discussion

Among the techniques discussed in the Introduction,

only MTTS and the bang-bang technique, proposed in [18],

are capable of imposing a tension constraint for a cable-

driven mechanism, for a path of arbitrary geometry. MTTS

was shown to produce a close-to-optimal trajectory when

compared to the this method, subject to the same constraints.

A major advantage of MTTS is the ability to handle path data

with abrupt changes in direction. However, we established

that the bang-bang method can also handle these data, if the

PATHSPLIT subalgorithm is used in a pre-treatment step.

For many applications, a major deficiency of the bang-

bang technique is the absence of jerk control, which can lead

to vibrations and high following error, particularly in path

regions of high curvature. Jerk control, such as that imple-

mented with MTTS, dampens these vibrations and results in

a lower following error, because a trajectory that requires ac-
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celerations to change smoothly is typically much easier to

track.

The original formulation of the bang-bang technique, in-

troduced in [1], cannot handle total acceleration constraints

or jerk constraints. If we cast the total acceleration, defined

in Eq. (6), using the bang-bang form of Eq. (43), we obtain

C1ṡ4 +C2ṡ2s̈+C3s̈2 ≤ α2
max (50)

where C1, C2, and C3 can be computed at each path point,

according to the first and second order derivatives of x, y,

and z with respect to s. For the cable k jerk, we have

d3ρk

ds3
ṡ3 + 3

d2ρk

ds2
ṡs̈+

dρk

ds

...
s ≤

...
ρ k,max. (51)

These equations cannot be solved using the bang-bang

method, which relies on isolating s̈, and then solving for ṡ

in the constraint equations. However, Dong et al. intro-

duced a modified, kinematic version of the bang-bang al-

gorithm in [12], which does allow for the inclusion of jerk

constraints, as described in Sec. 1. Their technique requires

the solution of a series of nonlinear single-variable optimiza-

tion problems, which is claimed to be computationally effi-

cient, though the computational time is not listed for the test

path used. Additionally, it is unclear if the technique can

be applied to systems with coupled constraint equations; the

experimental setup used to demonstrate the method was a 2-

DOF system consisting of two prismatic joints positioning a

stage. Coupled constraint equations would greatly increase

the complexity of the optimization problems to be solved.

Both MTTS and the regular bang-bang technique do not

rely on solving optimization problems, but instead use ex-

plicit, computationally-efficient steps. They are also both

applicable to systems with coupled axes. The 3-DOF cable-

suspended system studied in this paper is such a system, as

the solution to a 3× 3 equation must be found each time the

tension constraint is applied.

MTTS is also more suitable for complex paths, which

contain highly variable curvature, many abrupt changes in

direction, and as a result, many changes in acceleration sign.

Such paths would require the identification of many, in some

cases hundreds, of switching points with the bang-bang-

method. This would likely render the computational burden

of the method prohibitive, especially when we consider that

in [18], it was reported that the standard pick-and-place path

required the identification of five switching points, and the

computational time for producing the time-optimal trajectory

was nearly four minutes.

5 Conclusions

In this paper, minimum time trajectory shaping (MTTS),

a time-optimal trajectory planning technique, was adapted

for use with three-DOF spatial cable-driven robots. MTTS

admits velocity, acceleration, jerk, and dynamic constraints

that can be expressed as minimum and maximum cable ten-

sions. The tension constraint equations are imposed us-

ing analytic solutions to 3 × 3 non-linear systems. The

trajectory-shaping steps of MTTS are all simple and ex-

plicit, making the algorithm both fast and robust. MTTS

was applied to a test path for large-scale, three-DOF cable-

suspended robot, and the associated performance was com-

pared to that of the bang-bang method.

In the future, an experimental validation of the technique

is planned. Additionally, the technique will be modified to

use numerical solutions to the non-linear tension-constraint

equations, which will permit the generalization of the tech-

nique to higher-DOF cable-driven robots.
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